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Abstract
We use electronic structure calculations based upon density functional theory to search for ideal
plasmonic materials among the alkali–noble intermetallics. Importantly, we use density
functional perturbation theory to calculate the electron–phonon interaction and from there use a
first order solution to the Boltzmann equation to estimate the phenomenological damping
frequency in the Drude dielectric function. We discuss the necessary electronic features of a
plasmonic material and investigate the optical properties of the alkali–noble intermetallics in
terms of some generic plasmonic system quality factors. We conclude that at low negative
permittivities, KAu, with a damping frequency of 0.0224 eV and a high optical gap to bare
plasma frequency ratio, outperforms gold and to some extent silver as a plasmonic material.
Unfortunately, a low plasma frequency (1.54 eV) reduces its utility in modern plasmonics
applications. We also discuss, briefly, the effect of local fields on the optical properties of these
materials.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Plasmonic systems are finding a variety of uses in negative
index materials [1, 2] and superlensing [3, 4], thermal
therapeutics [5, 6] and waveguiding [7] to name a few.
The idea of designing new materials for these plasmonics
applications is appealing. Gold and silver are exclusively
used mainly because of experimental convenience. Even a
cursory investigation using measured optical constants for
the elements reveals superior alternatives, at least as far
as optical metrics are concerned [8]. The alkali metals,
although ideal in this regard, are naturally quite difficult to
work with. The next obvious place to search is the metallic
alloys and compounds where a suitable compromise between
metric performance and reactivity may be possible. The
choice now becomes bewildering and disappointingly few
experimental compilations of optical constants are available.
First principles calculations of the optical response offer a
promising way forward. We have already reported such studies
where KAu was identified as a promising candidate [9]. These
calculations were performed within the framework of density

1 Author to whom any correspondence should be addressed.

functional theory, using the random phase approximation to
calculate the optical response. However, they provide no
phenomenological electron scattering term, and hence are only
capable of giving an accurate description of the interband
component of the dielectric response and position of the
plasma frequency. Assuming a Drude intraband component
and using an empirical value for the damping, the imaginary
component of the dielectric function can be constructed. As
we have also pointed out [8] the real part is also required to
assess optical performance. Although this is straightforward to
calculate from a Kramers–Kronig analysis, knowledge of the
imaginary component over a broad frequency range is required
to achieve reliable results. This requires both knowledge of
the plasma frequency and phenomenological Drude damping.
In this paper we address this shortcoming by calculating the
electron–phonon coupling for some of the metallic compounds
studied in [9]. This allows us to derive the DC resistivity and
hence gain a reasonable estimate of the damping term.

The fundamental problem with plasmonic systems is
metallic loss. Although a variety of work has been done to
introduce gain into these systems [10–13], within reasonable
bounds a passive system has the advantage of simplicity.
The specifics of designing a geometry that performs best in
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a particular plasmonic application is nontrivial, and in real
systems there are a number of loss mechanisms including
surface scattering of electrons on the boundaries of the
geometry [14, 15], surface states (see for example [16, 17]),
surface roughness and grain boundaries [18]. Some of
these effects can be minimized by reverse engineering of the
geometry [19].

We have previously assessed the performance of various
elements as plasmonic materials, with specific examples
including nanospheres [20], the so called ‘poor mans’
superlens [21] and nanoshells [14]. More recently, we
presented an analysis of the plasmonic performance of various
elements using a set of geometry specific metrics [8]. A
convenient way to describe the operation of a plasmonic system
is in terms of the real part of the dielectric function ε′, as
this is directly related to the geometry in question. The
free electron metals Al, Ag, Au, Na and K outperform most
other elements, each in their own frequency and permittivity
range. We shall describe from hereon systems with low
negative permittivity as having low permittivity. For high
frequencies/low permittivities, Al performs most favorably,
while sodium and potassium perform very well at medium
permittivities −ε′ < 50 and gold performs favorably at high
permittivities −ε′ > 100 [8].

A number of alloy systems have been used in plasmonics,
the optical properties of random mixtures of Au, Ag, Cu and
Al were studied by Sharma et al [22]. They treat the bulk
dielectric function as a linear combination of the free electron
dielectric functions of the constituent metals:

εalloy(ω) = xεmetal1(ω)+ (1 − x)εmetal2(ω) (1)

where x is the mole fraction of the constituent metal, and εmetal

takes the form of a Drude model:

ε(ω) = 1 − ω2
p

ω(ω + iγ )
, (2)

where ωp and γ are the plasma frequency and phenomenologi-
cal damping terms, respectively. They suggest that the sensitiv-
ity and signal-to-noise ratio (SNR) of a surface plasmon based
fiber optic sensor can be tuned, with Al having the best SNR
and gold the best sensitivity. Unfortunately, single electron ex-
citations due to clustering or stoichiometric alloying (such as
AuAl2 [23]) are present in all these alloys, and can have a dra-
matic effect on the quality of a surface plasmon resonance.

Theoretical [24] and experimental [25] work on SiC
inclusions in MgB2 has suggested that because of strongly
anisotropic optical properties in MgB2 compared to silver and
gold, an isotropic negative index material is possible in the
visible regime. Bobb et al [26] have recently demonstrated a
shifting of the optical gap (frequency of the onset of interband
transitions) with the introduction of small percentages of
Cd into Au, leading to a slight increase in the absorption
efficiency of nanospheres compared to those made of elemental
gold. Unfortunately, the alloying disrupts the near infrared
behavior of gold where its local surface plasmon performance
is optimal [27].

Here we shall discuss the optimum electronic features for
an ideal plasmonic material, and apply these to some alkali–
noble intermetallics. We have previously discussed [9] the
optical properties of the noble-group-III (NG), alkali–noble
group-III (ANG) and alkali–noble (AN) intermetallics in terms
of the interband contribution to the dielectric function. The
alkali–noble intermetallics showed great promise with KAu
having a band edge above the plasma frequency, indicating that
it should perform very well at low permittivities. However,
in that work we neglected local field effects and lacked an
effective method for calculating the Drude phenomenological
damping term, so we could not adequately assess the absolute
plasmonic performance of these compounds. Here, to
complete our analysis, we have calculated the interband
contribution to the dielectric function including local field
effects within the random phase approximation (RPA) and
calculated the intraband contribution by approximating the
phenomenological damping term from first principles using the
phonon limited DC resistivity. The real part of the permittivity
is provided by a Kramers–Kronig integration.

2. The ideal plasmonic material

There are four main electronic features necessary for a good
plasmonic material. (i) The gradient of bands at the Fermi
surface must be high enough to allow for an appropriate plasma
frequency ωp. (ii) The Drude phenomenological damping term
γ , must be low compared to the plasma frequency. (iii) The
‘core polarizability’, represented in the Drude model by ε∞
must be low. And finally, (iv) the ratio between the optical
gap, ωg, and the plasma frequency must be proportional to the
sharpness of the band edge (ε′′(ωg)) itself. That is a material
with a sharp band edge that reduces rapidly with increased
frequency will perform better than a material where the band
edge does not comprise the dominant transition mechanism.
This amounts to the screened bulk plasmon frequency, ωs,
being well separated from the optical gap. As an example, in
gold, interband transitions interrupt the plasmonic response of
thin films and nanospheres because of low ωg/ωs. In silver,
where the ratio is slightly higher, the plasmonic performance
increases substantially.

The complex permittivity ε(ω) = ε′ + iε′′ in the Drude
approximation is given by

ε(ω) = ε∞ − ω2
p

ω(ω + iγ )
. (3)

There are an infinite number of metrics derivable for the
quality of a plasmonic resonance in any conceivable plasmonic
system, here we shall discuss two generic, system quality
factors. Within the quasistatic approximation, where the
system features are substantially smaller than the wavelength
and in the limit of low loss (ε′′), a generic metric for the quality
of a localized surface plasmon takes the form:

QLSP = −ε′/ε′′. (4)

Applicable examples include transverse prolate ellipsoid
(nanorod) modes, oblate ellipsoid film modes, nanospheres
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and nanoshells (assuming the shell is not so thin that surface
scattering dominates), see for example [14].

The derivative of QLSP with respect to frequency, gives a
good indication of the quality of the long-wavelength behavior
of local surface plasmon modes. In a Drude metal the
frequency which gives maximum QLSP is

ωQLSP
max =

(
ω2

p − γ ε∞
3ε∞

)1/2

, (5)

and the associated quality factor

Qmax
LSP(ω

QLSP
max ) = 2(ω2

p − γ 2ε∞)3/2

3γω2
p

√
3ε∞

. (6)

For less localized modes, such as the longitudinal mode on
a prolate ellipse, or traveling waves on a metal–dielectric
interface, a reasonably generic quality factor, which is
proportional to the propagation length of a surface plasmon
polariton (SPP) at a metal–dielectric interface in the limit of
low loss can be written [28]:

QSPP = ε′2/ε′′. (7)

In a Drude model, the SPP resonance quality at a given
permittivity can be written:

QSPP =
ε′2

√
γ 2(ε∞ − ε′)− ω2

p

γ (ε′ − ε∞)3/2
. (8)

To a good approximation (ε∞ = 0) QSPP increases as ω → γ ,
with a maximum value:

Qmax
SPP = ω2

p

2γ 2
. (9)

The temperature dependent phenomenological damping term
γ can be approximated from the phonon limited DC resistivity
by [29]:

γ (T ) = ε0ω
2
pρDC(T ), (10)

where ε0 is the permittivity of free space and we use a
temperature of 300 K for the rest of this paper.

3. Method

We have calculated the ground state, optical and dynamical
properties of the alkali–noble intermetallics using density
functional theory (DFT). As we shall only be discussing low
energy photons, and bulk materials, we shall take the q → 0
limit. The macroscopic dielectric function, including local
field effects, can be written in terms of the (G,G′) = (0, 0)
element of the inverse microscopic dielectric function:

ε(ω) = lim
q→0

1

[ε(q, ω)−1]G=0,G′=0
. (11)

Here, only a small number of reciprocal lattice vectors G are
required for convergence. Within the RPA, the microscopic

dielectric function can be written in terms of the non-
interacting response function χ [30–32]:

εG,G′(q, ω) = δG,G′ − 4πe2

|q + G|2 [χ(q, ω)]G,G′, (12)

where the linear response function is given by

[χ(q, ω)]G,G′ = − 2

	

∑
i, j,k

fk−qi (1 − fk j )

ω − E jk + Eik−q + iδ

× p∗
i jk(q,G)pi jk(q,G′). (13)

Here, 	 is the Brillouin zone volume, f the occupation,
pi jk(q,G) the matrix elements given by

pi jk(q,G) = 〈ψki |ei(q+G)·r|ψk−q j 〉 (14)

and Ek j , |ψki 〉 the Kohn–Sham energy eigenvalues and
eigenfunctions [33].

In order to determine the transport spectral function
α2

tr F(ω), which allows us to calculate the DC resistivity, we
first introduce the electron–phonon (EP) matrix element, which
describes the scattering of an electron at the Fermi surface from
state |ψki 〉 to state 〈ψk+q j | via the phonon perturbation:

ϕqv · dV eff
q , (15)

where dV eff
q is the change in the effective self-consistent Kohn–

Sham potential with respect to atomic displacements. The EP
matrix element is then [34]

gqv
k+q j,ki =

√
h̄

2Mωqv
〈ψk+q j |ϕqv · dV eff

q |ψki〉, (16)

where the phonon eigenvector ϕqv of branch v and momentum
q is a solution to the dynamical matrix

Dqϕ = ωqvϕqv, (17)

and M and ωqv are the atomic mass and the phonon frequency,
respectively. The dynamical matrix was solved using density
functional perturbation theory [35, 36] as implemented in the
density functional code ABINIT2 with Fritz Haber Institute (FHI)
pseudopotentials [38].

From the electron–phonon matrix elements (16) we can
now write down the spectral function:

α2
out(in)F(ω) = 1

NF

∑
v

∑
kik+q j

|gqv
k+q j,ki |2ηout(in)

× δ(Eki − EF)δ(Ek+q j − EF )δ(ω − ωqv), (18)

where the scattering efficiency factor η accounts for the various
scattering angles.

ηout(in) = vki · vk(+q) j

〈v2〉 . (19)

2 The ABINIT code is a common project of the Université Catholique de
Louvain, Corning Incorporated, the Université de Liège, the Commissariatà
l’Energie Atomique, Mitsubishi Chemical Corp. and the Ecole Polytechnique
Palaiseau http://www.abinit.org. Details of the code are published in [37].
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Table 1. Comparison of all electron and pseudopotential equilibrium
lattice constants (LC).

LDA lattice constants (Bohr)

Intermetallic Pseudopotential All electron [44]

LiAg 5.797 5.744
LiAu 5.688 5.714
NaAg 6.447 6.373
NaAu 6.324 6.308
KAg 7.083 7.210
KAu 6.891 7.071

The transport spectral function is simply the difference
between the integrated number of electrons scattered into or
out of all states by all possible phonon modes:

α2
tr F(ω) = α2

out F(ω)− α2
in F(ω). (20)

From this, Allen [39] calculates the upper bound of the phonon
limited DC resistivity by deriving a first order solution to the
Boltzmann equation:

ρDC(T ) = 	

NF 〈v2〉
∫ ∞

0

α2
tr F(ω)

ω

x2

sinh2 x
dω, (21)

where x is ω/2kBT . From the DC resistivity we can ap-
proximate the temperature dependent Drude phenomenologi-
cal damping term via (10). Dynamical calculations were per-
formed using the local density approximation to the exchange–
correlation energy by Perdew and Wang [40] with a plane
wave cutoff of 28 Ha. We use an unshifted k-space grid of
16×16×16 resulting in 4096 points in the Brillouin zone, and
35 q-points for the calculation of the dynamical matrix, corre-
sponding to an 8 × 8 × 8 grid. Equilibrium lattice constants
are given in table 1. Optical calculations were performed using
ground state wavefunctions from ABINIT on a 48 × 48 × 48 k-
space grid, and the matrix elements (14) were evaluated using
YAMBO [32] in a scheme that allows for the decoupling of the
frequency and state dependence. This dramatically reduces the
time required to evaluate the interband component of the per-
mittivity (see [41]).

It has been shown that quasiparticle corrections are
necessary to accurately reproduce the band edge of silver [42].
DFT-LDA underestimates the optical gap ωg which in silver
leads to an overlap of the band edge ε′′(∼ωg) with the
bulk plasmon frequency ωs. The additional loss contribution
adversely affects the quality of any resonance near this
frequency. In the case of silver both the Electron Energy
Loss (EEL) plasmon peak and the bare film surface plasmon
ε′(ω) ≈ −1 have reduced quality compared to experiment.
The main contribution to the underestimation of the optical
gap in silver comes from wavevector dependent errors in the
position of d-like states. In materials with only partially
occupied d-states, errors in the calculated bandwidth may
result in an overestimation of the optical gap, as is the case
for Ni3Al (see for example [43]). In section 4 we discuss the
quality of materials in terms of the optical gap to screened
plasma frequency ratio ωg/ωs. As all the alloys studied
here have fully occupied d-states, we anticipate some increase
in the plasmonic quality upon the inclusion of quasiparticle
corrections.

Figure 1. The real part of the permittivity including the intraband
contribution for the alkali–noble intermetallics including local field
effects.

4. Results

Optical data for elemental silver and gold as well as the alkali–
noble intermetallics is presented in table 2. For comparison,
we calculate the upper bounded ρDC of gold and silver to be
2.66 μ	 cm and 1.77 μ	 cm respectively, in good agreement
with the experimental values [29] of 2.04 and 1.55 μ	 cm.
LiAg and LiAu have the lowest DC resistivities of 7.6 μ	 cm
and 8.9 μ	 cm respectively, followed by NaAu and NaAg with
values of 25 μ	 cm and 33 μ	 cm, respectively. KAu has
a resistivity of 70 μ	 cm and for KAg the resistivity is the
highest of the alkali–noble intermetallics at 117 μ	 cm. As
the damping relies on the effective electron mass, the actual
scattering rate is lowest for KAu, which has a bare plasma
frequency of 1.54 eV. Both LiAg and LiAu have damping
frequencies only 2–3 times greater than gold and silver, and
reasonably high plasma frequencies of 7.28 eV and 7.2 eV
respectively, resulting in γ /ωp ratios which are comparable to
gold. Unfortunately, the optical gap in these materials is very
small (0.12 eV and 0.33 eV, respectively). This low band edge
to plasma frequency ratio means that all surface plasmons will
be screened by interband transitions, causing a reduction in the
quality of high frequency/low permittivity phenomena.

The optical gap to plasma frequency ratio (ωg/ωp) gives
a reasonable indication of the effect that interband transitions
will have on a plasmonic material, however, it is probably more
useful to describe the ratio in terms of the low energy dressed
or screened plasma frequency ωs, which takes into account not
only the energy of the optical gap, ωg, but also the magnitude
and spread of the band edge. ωg/ωs amounts to a description
of the quality of the low permittivity behavior of a material.
In terms of ωg/ωs, LiAg and LiAu do not perform as well
as NaAu and KAu, and the damping frequency is too high
in NaAg and KAg for them to perform well. In KAu, there
is a small region of negative ε′ above the plasma frequency
due to the effect of the 2.8 eV transition. The real part of
the dielectric function including the intraband contribution is
shown in figure 1.

Due to the proximity of the band edge to plasma
frequency, NaAu, KAg and KAu all have a finite region of
positive ε′ above the plasma frequency. This effect is also
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Table 2. Optical and electronic data for the alkali–noble intermetallics. Temperature dependent quantities are given at 300 K.

Metal ωp (eV) [9] Optical gap ωg (eV) ρDC (μ	 cm) γ (eV) γ /ωp ωg/ωs

Ag 9.6 3.9 [45] 1.77 0.0220 0.00229 1.03
Au 8.55 2.25 [45] 2.66 0.0262 0.00306 0.388
LiAg 7.28 0.12 7.58 0.0540 0.00742 0.0254
LiAu 7.20 0.33 8.90 0.0621 0.00862 0.0742
NaAg 6.47 0.70 33.1 0.187 0.0288 0.0874
NaAu 4.84 1.13 25.5 0.0802 0.0169 1.04
KAg 3.10 1.35 117 0.151 0.0486 1.39
KAu 1.54 1.55 70.1 0.0224 0.0145 2.98

Figure 2. The interband contribution to the imaginary part of the
permittivity for the alkali–noble intermetallics, including local field
effects. Note that the optical gap for LiAg (ωg = 0.12 eV) is less
than the smearing width used in the approximation of the delta
function in the denominator of (13).

seen in elemental silver with a band edge to screened plasma
frequency ratio above 1. It results in two additional bulk
plasmons below the plasma frequency (excluding KAu). The
higher energy plasmon decays into electron–hole pairs due to
the over lap in frequency with interband transitions. The low
frequency plasmon, however, is separated in frequency form
the interband transitions, and as such should exhibit a strong
EEL peak (1/ε′′). The main EEL peak in elemental silver
reaches 1.43 [46], slightly smaller than in KAu, where it is
1.7, but larger than KAg and NaAu where it is 0.2 and 0.4,
respectively.

The screened plasma frequency of NaAg is 8.01 eV, which
is above the bare plasma frequency of 6.47 eV. This is due to a
combination of the magnitude of the band edge, its dispersion
dε′′

ib/dω, and its position with respect to the bare plasma
frequency ωg/ωp = 0.11.

The interband contribution to the imaginary permittivity is
presented in figure 2. The frequency spread of the transitions
in the alkali-gold compounds is due to the energy difference
between the band pairs along R–X and X–M. Transitions that
occur near X are responsible for the higher energy peaks
comprising the band edge in LiAu (0.85 eV), but in NaAu and
KAu, they comprise the lower energy peak (1.3 eV and 1.55 eV,
respectively).

In LiAu, the low energy transitions are primarily caused
by transitions along the line M–M (from 0.32 eV), which
runs perpendicular to, and bisects R–X on the Brillouin zone

Figure 3. The resonance quality of a localized surface plasmon as a
function of the real permittivity from first principles. For reference,
experimental elemental data for silver: triangles Johnson and
Christy [47], circles Palik [46]. For gold: squares Weaver and
Frederikse [45]. Solid line near ‘Au’ label is first principles data for
gold.

boundary. In NaAu and KAu the M–M midpoint is responsible
for the higher energy transitions at 1.95 eV and 3.04 eV,
respectively. The 2.1 eV transition visible in LiAu occurs
directly at M and is forbidden in the other gold compounds.

In LiAg there are two very distinct peaks, one at 0.12 eV,
arising from the band edge along M–M, and a second due to
transitions between parallel bands along a very brief segment
of R–X. In NaAg and KAg these two sets of transitions overlap
in energy and are difficult to distinguish.

In KAu, the spreading of bands and reasonably high
ωg/ωp causes the screened bulk plasmon to be clear of
interband transitions, resulting in excellent low permittivity
behavior. QLSP data for the alkali–noble intermetallics is
shown in figure 3. As predicted by the ωg/ωs ratio, KAu has
exceptionally good low permittivity QLSP, similar to that of
silver, and better than gold. However, with a plasma frequency
of only 1.54 eV, the frequency of maximum QLSP, ωQLSP

max is
0.28 eV or 4.4 μm, and at ε′(ω) = −1, ω = 0.49 eV, limiting
its practical application.

The maximum QLSP for NaAg occurs at quite high
energies (3 eV), and is caused by contributions from
lower energy interband transitions. In terms of plasmonic
performance in the visible regime, NaAg performs best, as
it has a QLSP of 3.15 at 2.95 eV, which is much better than
gold at this frequency (QLSP = 0.16), and comparable to silver
(QLSP = 5.57).
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Table 3. QLSP data for the alkali–noble intermetallics and gold
calculated using equations (22) and (23). We assume ε∞ ≈ 1,
equation (22) is used to approximate the frequency of maximum
QLSP, we then use the interband contribution to the imaginary
permittivity at this frequency to recalculate QLSP using
equation (23).

Metal ε′
ib(0)

ωQLSP
max (eV)

equation (22)
ε′′

ib(ω
QLSP
max )

equation (22)
Qmax

LSP(ω
QLSP
max )

equation (23)

Au 9.78 1.50 0.369 53.6
LiAg 52.3 0.560 20.1 5.97
LiAu 34.2 0.686 18.5 6.33
NaAg 14.1 0.928 10.9 3.16
NaAu 11.9 0.761 1.03 6.25
KAg 8.33 0.541 0.402 2.47
KAu 7.28 0.297 0.203 7.32

There is a clear variation between the value of the Drude
QLSP maximum in equations (6) and values obtained from
figure 3. This stems from the interband contribution to the
real part of the permittivity. Although the ratio ωg/ωs informs
that the surface mode will not scatter into electron–hole pairs,
the overall resonance quality is affected by the reduction in
magnitude of ε′ from interband contributions. This screening
can be accounted for by replacing ε∞ with ε∞ + ε′

ib(0),
representing the zero frequency contribution to the interband
component of the real part of the permittivity. This causes an
increase in ε′ belowωg resulting in a decrease in low frequency
quality. Additionally, for materials withωg < ωs the imaginary
part of the interband component contributes to the reduction
of QLSP as well. A revised expression for the frequency of
maximum QLSP can now be derived from the addition of ε′

ib(0)
to the real part.

ωQLSP
max =

(
ω2

p − γ [ε∞ + ε′
ib(0)]

3[ε∞ + ε′
ib(0)]

)1/2

. (22)

And the associated quality factor including contributions from
ε′′

ib(ω
QLSP
max ) is approximately:

Qmax
LSP(ω

QLSP
max ) ≈ 2(ω2

p − γ 2[ε∞ + ε′
ib(0)])3/2

ε′′
ib(ω

QLSP
max )+ 3γω2

p

√
3[ε∞ + ε′

ib(0)]
. (23)

The effect of interband transitions is most noticeable in
compounds with low ωg. In LiAg and LiAu, large permittivity
behavior is disrupted significantly by interband transitions.
Both have damping to plasma frequency ratios only twice that
of gold and as such they should have max QLSP of 51.9 and
44.6, respectively. Table 3 shows the values of QLSP calculated
using equations (22) and (23). The actual values of QLSP for
LiAg and LiAu are approximately 10 times lower than they
would be in the absence of interband transitions. The case is
less severe for NaAg, NaAu and KAu, all approximately four
times lower. For LiAg, LiAu and NaAg the dominant local
surface plasmon damping mechanism at ωQLSP

max is due to decay
of the mode into electron–hole pairs, whereas NaAu, KAg and
KAu—due to high ωg/ωs ratios—escape this fate. Instead,
screening by ε′

ib is the dominant damping mechanism.
We now discuss the effect of interband transitions on

propagating modes. The quality factor for propagating surface

Figure 4. The resonance quality of a surface plasmon polariton as a
function of the real permittivity from first principles. For reference,
experimental elemental data for silver: triangles—Johnson and
Christy [47], Circles—Palik [46]. For gold: squares—Weaver and
Frederikse [45]. Solid line near ‘Au’ label is first principles data for
gold.

plasmons (equation (7)) for the alkali–noble intermetallics
is presented in figure 4. As this metric relies on the real
part of the permittivity squared, materials with higher plasma
frequencies perform substantially better than those with lower
values. The maximum value of QSPP is predicted within a
factor of 2 by equation (7) with the ratio γ /ωp providing
most of the pertinent information. In the absence of interband
transitions, QSPP in the Drude model is the upper half of an
ellipse centered on the point (ω2

p/2γ
2, 0) = (−ε′, QSPP) with

height Qmax
SPP = ω2

p/2γ
2. As a result, a majority of the increase

in QSPP with increasing ε′ occurs at lower permittivities.
As interband transitions are introduced, disruption of low
permittivity behavior causes the rate of increase dQSPP/d(−ε′)
to increase.

NaAg performs least favorably, with a high damping to
plasma frequency ratio of 0.0288 causing a reduction in Qmax

SPP .
The loop at ε′ = −15 is a result of the 1.15 eV peak in
the real part of the spectrum. KAu and NaAu have similar
performance at large permittivities, with similar γ /ωp ratios
of 0.0145 and 0.0169, respectively. KAu has slightly higher
QSPP at low permittivities due to the aforementioned effect of
higher ωg/ωs. The effect of interband transitions is not visible
in either spectrum. LiAg and LiAu have the highest γ /ωp

ratios and as such of the alkali–nobles they perform best, albeit
at impractical permittivities.

5. Local field effects

The difference in the maximum value of the interband
contribution to the imaginary permittivity (ε′′

max) for the
alkali–noble intermetallics with and without local field effects
is shown in table 4. Neglecting local fields amounts to
taking the inverse of the (G,G′) = (0, 0) element of the
microscopic dielectric function and making the assumption
that the microscopic electric field varies slowly over the unit
cell and has little effect on the field induced by the incident
photon. Inclusion of local fields affects the optical properties
of materials with localized states much more significantly than

6
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Table 4. The effect of the inclusion of local fields on the magnitude
of the band edge. Note that the band edge in LiAg is less than half
the optical smearing width (0.1 eV) away from zero frequency.

With local fields Neglecting local fields

Compound ε′′
max ωε′′max

(eV) ε′′
max ωε′′max

(eV)

LiAg 62.8 0.00 63.3 0.00
LiAu 22.8 1.05 24.8 1.00
NaAg 26.6 1.25 30.6 1.20
NaAu 18.3 1.71 23.3 1.66
KAg 19.7 1.96 30.4 1.91
KAu 13.7 2.81 21.2 2.71

those without [48]. As the ionic character of the alkali–
noble compounds increases from LiAg to KAu, the difference
between ε′′

max with and without local fields increases. The
difference is negligible in the lithium compounds. In the
sodium compounds, the neglect of local fields increases the
maximum interband transition magnitude by about 20%, and
in the potassium compounds this is exacerbated to 50%.

6. Conclusions

We have discussed the optical properties of a number of alkali–
noble intermetallics in terms of some generic plasmonic system
quality factors. We have discussed the necessary electronic
features for an ideal plasmonic material, and made adjustments
to generic quality factors to account for the properties of real
systems.

Most notably, we have calculated from first principles
the Drude phenomenological damping frequency, allowing us
to accurately describe the long-wavelength behavior of these
materials.

Of the intermetallics discussed here, KAu performs best,
outperforming gold at low permittivities, and over a small
permittivity range, equaling the QLSP of silver. Unfortunately,
a low plasma frequency reduces the applicability of KAu to
modern plasmonic applications, where high plasmonic quality
in the UV–visible frequency regime is desired. NaAg performs
better than gold and comparably to silver at wavelengths
around 400 nm. However, the plasmonic quality in these
materials is dwarfed by the low permittivity properties of the
elemental alkali metals, with potassium metal having a QLSP

of greater than 10 at 3 eV.
It is worth noting that small variations in the equilibrium

lattice constant between different exchange–correlation func-
tionals causes bands near the FS to change from conduction
(GGA) to valence (LDA) states. This has an impact on the lo-
cale of transitions in the Brillouin zone. Calculations of the
dielectric function of lithium at high pressure have shown that
the band edge can be shifted upwards in energy dramatically
from 3 to 6.5 eV at 40 GPa. Additionally, self-energy cor-
rections to the Kohn–Sham quasiparticle energies increase the
optical gap.

Increasing the energy of the band edge by even a small
amount, especially in KAu and NaAu, will dramatically
improve the frequency properties of the plasmonic response.
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